CP Violation Working Group Summary

Rick Jesik Indiana University

Workshop on

B Physics at the Tevatron

Run II and Beyond

February 26 2000

CP violation studies

WG1 has chosen to study the following modes:

•
$$B \rightarrow J/\psi + K_S$$

• measures $\sin(2\beta)$

•
$$B_d \to \pi \pi$$
, $B_s \to KK$

 \bullet probes α and γ

•
$$B \rightarrow D K$$

• measures γ

•
$$B \rightarrow \rho \pi$$

• measures α

•
$$B_S \rightarrow J/\psi + \phi$$
 , $B \rightarrow J/\psi + \eta$ (η')

look for unexpected asymmetry

DØ $B \rightarrow J/\psi K_S$ reconstruction

Combined $\mu^+\mu^-\pi^+\pi^$ invariant mass (before fit)

DØ Run II GEANT + Reco

reconstruction efficiency:

5% (GEANT + Reco)

9% (MCFAST)

Flavor Tagging

Tag	εD^2 (%) measured CDF Run I	εD^{2} (%) expected CDF Run II	Relevant DØ difference	DØ capabilities
Same side	$1.8 \pm 0.4 \pm 0.3$	2.0	same	2.0
Soft lepton	$0.9 \pm 0.1 \pm 0.1$	1.7	μ, e ID coverage	3.1
Jet charge	$0.8 \pm 0.1 \pm 0.1$	3.0	forward tracking	4.7
Opp. side K		2.4	no ToF	none
Combined		9.1		9.8

DØ $sin(2\beta)$ expectations for 2fb⁻¹

For a time dependent analysis:

$$\sigma(\sin 2\beta) \approx e^{x_d^2 \Gamma^2 \sigma_t^2} \sqrt{\frac{1 + 4x_d^2}{2x_d}} \frac{1}{\sqrt{\varepsilon D^2 N}} \sqrt{1 + \frac{B}{S}}$$

- $(S/B \sim 0.75)$
- $\varepsilon D^2 \sim 9.8 \%$
- $\sigma_t \sim 128 \text{ fs}$

mode	$J/\psi \rightarrow \mu^+\mu^-$	$J/\psi \rightarrow e^+e^-$	
trigger eff. (%)	27	20	
reco'd events	40,000	30,000	
(cin 2 R)	0.04	0.05	
$\sigma(\sin 2\beta)$	0.03		

comparison of experiments

experiment	$N(B \rightarrow J/\psi K_S)$	S/B	$\varepsilon D^{2}(\%)$	σ_t (fs)	$\frac{\delta(\sin 2\beta)}{\times 10}$
DØ	40 K	0.75	9.8	128	0.4
CDF	30 K	1.0	9.1	50	0.5
BTeV	110 K	10	10	50	0.2

These numbers are for 2 fb-1

CDF / DØ will get this in ~ the first 2 years of running

BTeV will get it in 1, but 5 years later

Just for T/4->MM

CDF B >TTH

Mass Distributions

CRAIG BLOCKER

CP Decay Asymmetries

$$\begin{split} &P_{B_{d}(\overline{B}_{d}) \rightarrow \pi\pi} = \frac{\Gamma}{2} \frac{\left[1 \mp A_{mix}^{\pi\pi} \sin(\Delta m_{d}t) \right]}{\left[\mp A_{dir}^{\pi\pi} \cos(\Delta m_{d}t) \right]} e^{-\Gamma t} \\ &P_{B_{d}(\overline{B}_{d}) \rightarrow K\pi} = \frac{\Gamma}{2} e^{-\Gamma t} \\ &P_{B_{s}(\overline{B}_{s}) \rightarrow KK} = \frac{\Gamma}{2} \frac{\left[1 \mp A_{mix}^{KK} \sin(\Delta m_{s}t) \right]}{\left[\mp A_{dir}^{KK} \cos(\Delta m_{s}t) \right]} e^{-\Gamma t} \\ &P_{B_{s}(\overline{B}_{s}) \rightarrow K\pi} = \frac{\Gamma}{2} e^{-\Gamma t} \end{split}$$

If there are no penguin amplitudes,
$$A_{mix}^{\pi\pi} = \sin(2\alpha)$$
, $A_{mix}^{KK} = \sin(2\gamma)$, and

$$A_{\rm dir}^{\pi\pi} = A_{\rm dir}^{\rm KK} = 0.$$

Event Numbers

Assume 5,000 $B_d \rightarrow \pi \pi$ and $\epsilon D^2 = 10\%$ for tagging. Note that B_s tagging may differ from B_d , which is ignored here.

This gives the following numbers of events:

$$B_d \rightarrow \pi \pi$$
 500
 $B_d \rightarrow K \pi$ 2000
 $B_s \rightarrow K \pi$ 250
 $B_s \rightarrow K K$ 1000

Background 5000 from 5.0 to 5.5 GeV/c²

Mass Distributions

Log Likelihood Function

Assume that we know f's, M's, σ 's, Γ 's, and Δ m's well. In L is then function of the A's.

A_{mix}(ππ) Resolutions

List of Observables

untagged measurements tagged measurements

$*$
 • Relative BR of B_d → $\pi^+\pi^-, K^{\pm}\pi^{\mp}$

$$♣$$
 • Relative BR of $B_s \to K^+K^-, K^{\pm}\pi^{\mp}$

$*$
• Direct CP violation in $B_d \to K^+ \pi^-$

$*$
 • Direct CP violation in B_s → $K^-\pi^+$

$*$
 • $A_{cp}^{mix}, A_{cp}^{dir}, A_{\Delta\Gamma}$ in tagged $B_d \to \pi^+\pi^-$

$$A_{cp}^{mix}, A_{cp}^{dir}, A_{\Delta\Gamma}$$
 in tagged $B_s \to K^+K^-$

$$* \bullet A_{\Delta\Gamma}$$
 in untagged $B_s \to K^+K^-$ decays

$$A_{\Delta\Gamma}$$
 in untagged $B_d \to \pi^+\pi^-$ decays

*• mean lifetime of
$$B_d \to \pi^+\pi^-$$

$$*$$
 • mean lifetime of B_s → K^+K^-

All but three of these are interesting within SM

Theoretical Interpretation

(R.Fleischer PLB459 (1999) 306)

χ^2 fit to 5 experimental results Four unknowns:

• d = ratio of hadronic matrix elements

 $\sin 2\beta =$

- θ = phase of ratio of hadronic matrix elements
- $\gamma, \beta = \text{weak phases}$

Five observables:

$$A_{cp}^{dir}(\pi^{+}\pi^{-}) = -\frac{2d\sin\theta\sin\gamma}{1-2d\cos\theta\cos\gamma+d^{2}}$$

$$A_{cp}^{dir}(K^{+}K^{-}) = \frac{2d\frac{1-\lambda^{2}}{\lambda^{2}}\sin\theta\sin\gamma}{1+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\cos\gamma+(\frac{1-\lambda^{2}}{\lambda^{2}})^{2}d^{2}}$$

$$\sim \frac{2\lambda^{2}}{d}\sin\theta\sin\gamma$$

$$A_{cp}^{mix}(K^{+}K^{-}) = \frac{\sin2\gamma+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\sin\gamma}{1+2d\frac{1-\lambda^{2}}{\lambda^{2}}\cos\theta\cos\gamma+d^{2}(\frac{1-\lambda^{2}}{\lambda^{2}})^{2}}$$

$$\sim \frac{2\lambda^{2}}{d}\cos\theta\sin\gamma$$

$$A_{cp}^{mix}(\pi^{+}\pi^{-}) = \frac{\sin2(\beta+\gamma)-2d\cos\theta\sin(2\beta+\gamma)+d^{2}\sin2\beta}{1-2d\cos\theta\cos\gamma+d^{2}}$$

 0.70 ± 0.05

Conclusion

- Expect CDF to measure A^{dir} and A^{mix} for $B_d \to \pi^+\pi^-$ as well as $B_s \to K^+K^-$.
- χ^2 fit to 4 A's and $\sin 2\beta$ to determine $\sin \gamma$.
- VERY PRELIMINARY assessment of sensitivity looks promising.
- VERY PRELIMINARY assessment of theoretical uncertainties look promising.
- MORE WORK required to make firm conclusions.

Implemented Trigger (2)

- On the reconstructed tracks the following requirements have to be met:
 - 1 tight quality lepton signature, $p_T > 3$ GeV.
 - 2 other tracks, $p_T > 1.5$ GeV.
 - 2 isolated tracks, one with $p_T > 3 \text{ GeV}$
 - All tracks have to have hits in all the CFT layers.

$B_d \rightarrow \pi^+ \pi^- Mass Plots$

24/02/00

Michele Petteni, Imperial College

expect ~ 1K events in 2451 already lepton tagged

 $B_s \to D_s^{\mp} K^{\pm}$ can be used to measure the unitarity triangle angle γ :

Advantages:

- Theoretically clean: no penguins
- Reasonable branching fractions (BF $> 10^{-4}$)
- Same trigger as B_s mixing with $B_s \to D_s^- \pi^+$
- Complements B factories' measurements

Disadvantages:

- Requires tagging and a time dependent B_s analysis
- $B_s \to D_s^- \pi^+$ background
- Strong phase δ
- Discrete ambiguities

The Decay Rate Equations

$$\Gamma_{B_s \to D_s^- K^+} = A e^{-t} \left[\sqrt{1 - R^2} \cos(\gamma + \delta) \sinh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + \cosh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + R \cos(x_s t) - \sqrt{1 - R^2} \sin(\gamma + \delta) \sin(x_s t) \right]$$

$$\Gamma_{B_s \to D_s^+ K^-} = A e^{-t} \left[\sqrt{1 - R^2} \cos(\gamma - \delta) \sinh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + \cosh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) - R \cos(x_s t) - \sqrt{1 - R^2} \sin(\gamma - \delta) \sin(x_s t) \right]$$

$$\Gamma_{\bar{B}_s \to D_s^- K^+} = A e^{-t} \left[\sqrt{1 - R^2} \cos(\gamma + \delta) \sinh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + \cosh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) - R \cos(x_s t) + \sqrt{1 - R^2} \sin(\gamma + \delta) \sin(x_s t) \right]$$

$$\Gamma_{\bar{B}_s \to D_s^+ K^-} = A e^{-t} \left[\sqrt{1 - R^2} \cos(\gamma - \delta) \sinh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + \cosh\left(\frac{\Delta \Gamma}{\Gamma} \cdot \frac{t}{2}\right) + R \cos(x_s t) + \sqrt{1 - R^2} \sin(\gamma - \delta) \sin(x_s t) \right]$$

Toy Monte Carlo

We test our sensitivity using a toy Monte Carlo including:

- Functional form of signal and backgrounds
- Resolutions
- Mistag probability

Fit toy experiments with unbinned log likelihood fitter

Compare reported and actual error as a function of input parameters

Parameter	Standard Model	Parameter	CDF II
γ	90°	$\sigma_{t/ au}$	0.03
δ	10°	$\epsilon \dot{D}_{mistag}^2$	0.113
$ ar{A}_f / A_f $	$\sqrt{1.4/2.4}$	$ \begin{array}{c} \epsilon D_{mistag}^2 \\ N(B_s \to D_s K) \\ S/B \end{array} $	840
$oldsymbol{x_s}$	20	S/B	1/6
x_d	0.723		
$\Delta\Gamma/\Gamma$	0.16		

Estimated CDF Sensitivity

for 2 fb⁻² and
$$S/B = 1/6$$
:
 $\sigma(\sin(\gamma \pm \delta)) \approx 0.7$

• Red triangle: Central values for fit

• Blue squares: S/B = 1/6

• Green squares: S/B = 1/1

Pull and error distributions for $\sin(\gamma + \delta)$

BTeV

Reconstruction Efficiency

- Reconstruction effic 2.0% ($\phi\pi$), 1.7%(K^*K)
- Trigger effic $\sim 68\%$ (2 tracks @4 σ) both modes

T	0	1032	
Luminosity	2×10^{32}		
Running time	$10^7~{ m sec}$		
Integrated Luminosity	2 fb-1		
$\sigma_{bar{b}}$	$100 \mu \mathrm{b}$		
Number of $B\overline{B}$ events	$2 \times$	2×10^{11}	
Number of $B_s^0 + \overline{B}_s^0$	$5 imes 10^{10}$		
${ m BR}(B^0_s o D^sK^+)$	$2. \times 10^{-4}$		
${ m BR}(B^0_s o D^+_sK^-)$	$1. \times 10^{-4}$		
${ m BR}(D_s o \phi \pi^+) imes BR(\phi o K^+K^-)$	1.8×10^{-2}	,	
$\mathrm{BR}(D_s \to \overline{K}^{*0}K) \times BR(\overline{K}^{*0} \to K^-\pi^+)$		2.2×10^{-2}	
Reconstruction efficiency	.020	.017	
Trigger efficiency	0.70	0.70	
Number of reconstructed $B_s^0(\overline{B}_s^0) \to D_s K$	3800	3900	
Tagging efficiency ϵ	.40		
Number of tagged events	1500	1600	

Table 1: Expected Number of Events/107 sec

Time Resolution

- \bullet CP asymmetry is diluted by $e^{-\sigma_t^2 x_s^2/2}$ (σ_t is in units of τ_{B_s})
- A gaussian fit to the $t_{gen}-t_{res}$ distribution gives $\sigma_t=45$ fsec for the $D_s\to\phi\pi$ mode
- \bullet Given that $\tau_{B_s}=1.54$ psec, then $\sigma_t/t=.03$

Figure 3: Proper Time Resolution for B_s : $t_{gen}-t_{rec}$ (nsec)

Conclusions

- The ability of BTeV to measure the angle γ of the unitarity triangle depends on several factors which are not well-known at the moment, in particular the branching fractions for $B_s \to D_s K$, the B_s mixing parameter x_s and the lifetime difference $\Delta\Gamma(B_s)$.
- We expect to have about 3000 reconstructed and tagged events per year (10^7 sec) at a luminosity of 2×10^{32} .
- Assuming reasonable estimates of branching ratios and x_s we expect to measure γ to about 10^o in one year. If $\Delta\Gamma(B_s) > 0.1$ the measurement of γ will be free from discrete ambiguities.

Similar sensitivity for B-> DK.

Peek At GEANT Simulations

The BTeV simulation and ECAL working groups have successfully implemented a full GEANT simulation of the electromagnetic calorimeter (ECAL)

Color coded hit pattern in both ECAL

Signal MC for $B \to \rho \pi$ with PYTHIA as basic event generator.

A. Wolf

Fast and Dirty Look at $B_s \to J/\psi \ \phi$

Quantity	Value	Yield	
		(Events/year)	
Luminosity:	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, , , , , , , , , , , , , , , , , , , ,	
One Year:	$10^7 \mathrm{\ s}$		
$\sigma_{bar{b}}$:	$100~\mu\mathrm{b}$		
${\cal B}(ar b o B_s)$	0.13	$5.2 imes 10^{10}$	
$\mathcal{B}(B_s \to \psi \phi)$:	$1. imes 10^{-3}$	$5.2 imes 10^7$	
$\mathcal{B}(\psi o \mu^+\mu^-)$:	0.061		
$\mathcal{B}(\phi \to K^+K^-)$:	0.500	$1.6 imes 10^6$	
$\epsilon(\mathrm{Geometric})^\dagger$	0.18		
$\epsilon({\rm Analysis~cuts})^{\dagger}$	0.17	48,000.	
$\epsilon(\mathrm{Trigger})^{\dagger}$	0.85	41,000.	
Tagging: ϵD^2	0.10		
S/B	20:1		
σ (Proper Decay time)	38 fs		
x_s	20-40??		
δ:			
Time Integrated:	$0.31(x_s = 20)$ to $0.62(x_s = 40)$		
Time Dependent:	$0.025(x_s = 20)$ to $0.035(x_s = 40)$		

- † Efficiencies assumed equal to those for $B_s \to J/\psi \ \bar{K}^{*0}$.
- Numbers in red used in sensitivity calculation.

Rob Kutschke

CP violation chapter

- $B \rightarrow J/\psi + K_S B_S \rightarrow J/\psi + \phi$
 - Rick Jesik, Susan Gardner
- $B_d \to \pi \pi$, $B_s \to K K$
 - CDF, Matthias Neubert
- $B \rightarrow D K$
 - Penny Kasper, David Atwood
- $B \rightarrow \rho \pi$
 - Tomasz Sroczynski, Joao Silva
- $B \rightarrow J/\psi + \eta \ (\eta')$
 - William Bell, Yossi Nir
- Summary
 - working group conveners

Each section will have:

- introduction (theory)
- •experimental simulations
 - •DZero
 - •CDF
 - •BTeV
 - summary and comparison
- references

Conclusions

We have made good progress

- new people involved interested in B physics
- after further review
 - DZero/CDF $\sin(2\beta)$ expectations are even better
 - we may yet get something out of $B \to \pi \pi (KK)$
- very nice presentations at this meeting
 - no fist fights only one shouting match

Lots of work left to do

- new BTeV simulations
- Dzero GEANT + Reco simulations
- write it all up
 - we have an outline and have assigned responsibilities
 - FIRST DRAFT DUE BY END OF MARCH